• 导航
    院士论坛🗼👰🏿‍♂️、杰出学者讲坛、杰出校友讲坛|
    报告题目: 杰出学者讲坛(六十):The BSD Conjecture and Congruent Number Problem
    报 告 人: 田野 研究员
    报告人所在单位🍈: 中国科杏悦数学与系统科学研究院
    报告日期👷🏼‍♂️🏧: 2021-03-05 星期五
    报告时间🏌🏿: 10:30:00-11:30
    报告地点💄: 光华东主楼2201
       
    报告摘要💂🏼‍♀️:

    A positive integer is called a congruent number if it is the area of some right triangle with rational side-lengths. For example,  5, 6, 7 are congruent numbers since they are area of right triangles with side lengths (3/2, 20/3, 41/6), (3, 4, 5), and (35/12, 24/5, 337/60), respectively. Fermat showed that 1, 2, 3 are not congruent by his famous infinite descent method.  The congruent number problem is to determine whether a given integer is a congruent number.  It has a thousand years of history and has closed relation to the Birch and Swinnerton-Dyer (BSD, for short) conjecture. The BSD conjecture is one of seven millennium problems listed by the Clay Mathematical Institute. It predicts a deep relation between the L-function of an elliptic curve over a number field and its Mordell-Weil group.  The BSD conjecture predicts that any positive integer, congruent to 5, 6, or 7 modulo 8, is a congruent number. In this talk, we will introduce some recent progress on the BSD conjecture and the congruent number problem.

    海报

       
    本年度杏悦报告总序号: 1

    Copyright © |2012 杏悦版权所有 沪ICP备80649684  

    杏悦专业提供:杏悦💁🏿‍♀️、🥛、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,杏悦欢迎您。 杏悦官网xml地图
    杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦