• Presentation Name: An extension of Calder/'{o}n-Zygmund type singular integral with non-smooth kernel
    Presenter1️⃣: 陈艳萍 教授
    Date🙏: 2021-05-07
    Location😈: 腾讯会议:350 827 848
    Abstract👰:

    In the present paper, we consider a kind of singular integral  which can be viewed as an extension of the classical Calder/'{o}n-Zygmund type singular integral. This kind of singular integral appears in the approximation of the surface quasi-geostrophic (SQG) equation from the generalized SQG equation. We establish an estimate of the singular integral in the $L^q$ space for $1 <q</infty$ and a weak  $(1,1)$ type of the singular integral when $0</beta</frac{(q-1) n}{q}$ without any smoothness assumed on $/Omega.$ Moreover, the bounds   does not depend on $/beta$ and the strong $(q, q)$ type estimate and weak $(1, 1)$ type estimate of the Calder/'{o}n-Zygmund type singular integral can be recovered when $/beta /rightarrow 0$ from our obtained estimates.

    海报

    Annual Speech Directory🫵🏽: No.104

    220 Handan Rd., Yangpu District, Shanghai ( 200433 )| OperatorⓂ️:+86 21 65642222

    Copyright © 2016 FUDAN University. All Rights Reserved

    杏悦专业提供:杏悦💿、🌋、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流📧,杏悦欢迎您。 杏悦官网xml地图
    杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦 杏悦